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Resonant driving of chaotic orbits
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Finite time segments of chaotic orbits in strongly nonintegrable potentials often exhibit complicated
power spectra, which, despite being broadband, are dominated by frequencies w appropriate for “near-
by’ regular orbits. This implies that even low amplitude periodic driving can trigger complicated reso-
nant couplings, evidencing a sensitive dependence on the driving frequency Q. Numerical experiments
involving individual chaotic orbits indicate that the response to a low amplitude time-periodic perturba-
tion, as measured, e.g., by the maximum excursion in energy arising within a given time interval, can ex-
hibit a sensitive dependence on (), with substantial structure even on scales 8Q < 107* times a typical
natural frequency . Ensembles of chaotic initial conditions driven with a frequency () comparable to
the natural frequencies of the unperturbed orbits typically display diffusive behavior: The distribution of
energy changes, N(8E(t)), at any given time ¢ is Gaussian and the rms value of the change in energy
8E, .= A(Q,E)at!”?, where a denotes the driving amplitude. For fixed energy E, the proportionality
constant A is independent of the detailed choice of initial conditions, but can exhibit a complicated
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dependence on ). Potential implications for galactic dynamics are discussed.

PACS number(s): 05.90.+m, 51.10.+y, 98.10.+z

I. INTRODUCTION AND MOTIVATION

Recent years have seen a growing interest in the possi-
ble role of chaotic (i.e., stochastic) orbits in a number of
different astronomical settings, including problems in
galactic dynamics [1]. This interest has led many galactic
dynamicists to embrace various techniques that have
been developed in the nonlinear dynamics community,
and that have already found fruitful applications in vari-
ous other fields of astronomy, including solar system dy-
namics.

Unfortunately, however, many of these techniques, in-
cluding the computation of Liapounov exponents, involve
asymptotic ¢t — oo limits which, in the context of galactic
dynamics, are difficult to justify. In terms of their natural
timescale, a characteristic crossing time ¢, galaxies are
relatively young, typically ~(100-200)¢_, in age, so that
many aspects of their behavior may be intrinsically tran-
sient in character. Thus, in particular, many details that
“wash out” on long time scales may be quite important
over times as short as ~(100-200)z,.

This fact implies that individual chaotic orbits can be
difficult to characterize on short time scales, especially
given the existence of cantori [2] and other partial ob-
structions, which can partition the stochastic phase space
regions into several nearly disjoint pieces. However, it is
still possible to obtain useful information.about problems
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related to shorter time evolution if one chooses to focus
on collections of orbits rather than on the detailed prop-
erties of individual trajectories. This recognition has led
to the proposal of a theory of transient ensemble dynam-
ics [3,4], which focuses exclusively on the statistical prop-
erties of ensembles of stochastic orbits, emphasizing the
transient features associated with a short time evolution.

Over the past several decades there has also emerged a
growing realization that the standard modeling of galax-
ies as isolated, time-independent equilibria may be some-
what too naive. Starting with the pioneering simulations
of Toomre and Toomre [5], it has been recognized that
collisions and other close encounters between galaxies
can have a significant influence on the shapes of galaxies,
and there is growing observational evidence [6] that
many galaxies bear imprints indicating that they have ex-
perienced significant interactions with their neighbors.
In particular, high resolution photometry has provided
evidence that many galaxies, especially those located in
rich cluster environments, have shapes more complicated
than can be explained by either axisymmetric or plane
symmetric triaxial figures observed in projection [7].

This is significant because the simple models that as-
tronomers are wont to consider may be structurally un-
stable in the sense that even relatively small changes in
shape can significantly alter the properties of the orbits
entering into a self-consistent equilibrium or near equilib-
rium. Thus, for example, it has been determined numeri-
cally [8] that breaking plane symmetries through the in-
troduction of /=3 or 4 harmonic perturbations can great-
ly increase the overall amount of stochasticity, as probed,
e.g., by the Kolmogorov entropy. Similar effects can also
arise if some model is perturbed by inserting a large point
mass that could mock the gravitational influences of a su-
permassive black hole [8,9].
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Such investigations of the effects of broken spatial sym-
metries are extremely important. However, if one attri-
butes these broken symmetries to the perturbing
influences of an external environment, it would seem nat-
ural to allow for the effects of temporal symmetry break-
ing as well, recognizing that the observed spatial irregu-
larities could signal a bulk gravitational potential that is
changing systematically in time. In this connection, it is
also important to recognize that even an isolated system
can exhibit low amplitude periodic oscillations. There
are analytic demonstrations [10] that the collisionless
Boltzmann equation does in fact admit solutions corre-
sponding to finite amplitude, systematic oscillations, as
well as numerical evidence that such oscillations could
arise from an N-body evolution, both in one dimension
[11] and, perhaps more controversially, in three [12].

Even if one does not accept the possibility that an iso-
lated galaxy could exhibit systematic periodic oscilla-
tions, he or she must recognize that galaxies are inevit-
ably subjected to time-dependent perturbations. Howev-
er, any such perturbation can be Fourier decomposed
into a sum of periodic disturbances, and it is natural to
analyze the effects of a single disturbing frequency before
studying possible mode-mode couplings associated with
multiple periodicities. It would, therefore, seem useful to
investigate the short time (¢ <100-200¢.) response of
chaotic orbits to relatively low amplitude periodic driv-
ing, both at the level of individual orbits and in terms of
the behavior of ensembles of orbits. Such is the purpose
of this paper.

Most of the calculations described herein involved per-
turbations of one simple two degree of freedom system,
characterized by a time-independent Hamiltonian

1
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with ¢=1.0, m=0.3, and a?=0.1. For typical energies
corresponding to bound orbits, a characteristic crossing
time in this potential is, in absolute units, of order
t..~10-20, so that the age of the Universe, ty, corre-
sponds to a time t~2000. The perturbations involved
the introduction of periodic oscillations in the core radius
¢ and the asymmetry parameter m, assuming

c(t)=c(l1+a,cosQt) and m(t)=m (1+a,,cosQt) . (2)

For a broad range of energies, this Hamiltonian admits
both regular and stochastic orbits. Most, if not all, the
regular orbits are either loops or boxes. Many of the sto-
chastic orbits are wunconfined, moving unimpeded
throughout most of the stochastic sea. However, there
also exists a nontrivial measure of confined stochastic or-
bits which, because of the effects of cantori, are trapped
on short time scales near the regular islands. Typical ex-
amples of loop, box, unconfined stochastic, and confined
stochastic orbits are exhibited in Figs. 1(a)—1(d).

The basic results derived in this paper, both qualitative
and semiquantitative, are independent of whether ¢ or m
is perturbed, which suggests that the detailed form of the
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FIG. 1. Four orbits computed for the Hamiltonian (1) with
energy E = —0.3. (a) A typical loop orbit. (b) A typical box or-
bit. (¢) A typical unconfined stochastic orbit. (d) A typical
confined stochastic orbit.

perturbing influence is relatively unimportant. Less ex-
haustive investigations indicate that similar results are
also obtained for other nonintegrable potentials admit-
ting large measures of both regular and chaotic orbits,
e.g., the so-called D-4 potential [13]. There is, therefore,
reason to anticipate that the results reported herein are
relatively generic.

One might naively expect that, because chaotic orbits
are manifestly irregular, a simple periodic driving will not
trigger a resonant response. This, however, is false. By
applying well known spectral techniques [14] to stochas-
tic orbits, one finds [15,16] that, despite exhibiting a
power spectrum that is relatively broadband, these orbits
are typically dominated by frequencies at or near a few
fundamental values. The obvious point, then, is that cou-
plings to these special frequencies can, in fact, trigger a
substantial resonant response.

The principal conclusion of the computations reported
herein is that, as for the case of regular orbits, the effects
of a modest amplitude periodic driving are intrinsically
resonant in nature, albeit exhibiting a more complicated
response indicative of the existence of a variety of unper-
turbed frequencies. This complexity implies that, once
again, characterizing individual orbits is quite hard. If,
however, one focuses on an ensemble of stochastic orbits,
e.g., a sampling of an unperturbed invariant [17] or near-
invariant [3] measure of energy E,, one is led to a com-
paratively simple statistical characterization. In terms of
its effects on the bulk properties of the ensemble, periodic
driving serves simply to trigger a diffusion process: At
any given instant of time, the distribution of changes in
energy N(8E(t)), is Gaussian, with a dispersion that
grows as ¢'/2 and that scales linearly in the amplitude of
the perturbing influence.

Section II of this paper recalls the qualitative features
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of Fourier spectra generated from stochastic orbits, and
then contrasts in general terms the effects of periodic
driving on regular versus stochastic orbits. Section III
turns to a systematic investigation of how, for an indivi-
dual stochastic orbit, the response to modest periodic
driving varies as a function of driving frequency, illustrat-
ing in particular that the response can exhibit substantial
structure even on very small scales. Section IV shows
how this complicated response observed for individual
orbits leads at the level of ensembles to a simple diffusive
behavior. Section V concludes with some speculations on
potential astronomical implications.

II. SPECTRAL ANALYSIS
OF STOCHASTIC ORBITS

Suppose, for specificity, that one is given configuration
space coordinates x (¢;) and y (¢;), generated for an orbit
in some two-dimensional system at j instants of time,
each separated by the same fixed interval 8¢. It is then
natural to define a discrete Fourier transform

N
x(wp)= 3 x(t;))exp(—iwt;) , (3)
j=1
and the corresponding y(w;), for a set of frequencies
{w} with k =<j. Because x(¢;) and y(¢;) are, by con-
struction, real numbers, one knows that x(w;)
=x*(—-cok ), where the dagger denotes complex con-
jugation, so that it is sufficient to consider positive fre-
quencies ;. The real and imaginary parts of x (w; ) and
y(w;) can be viewed separately as being generated by
cosine and sine series, and the total power at frequency
w, is encoded in the magnitudes |x (o, )| and |y (w0, ).

For an integrable system, where the orbits are multiply
periodic, the true Fourier transforms |x (w)| and |y (w)|
generated from an analytic representation of some orbit
will only be nonvanishing for a set of discrete frequencies.
However, given the finite resolution associated with the
sampling interval 8¢ and the finite total sampling time
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(j —1)6¢, the computed spectra for a numerical realiza-
tion of the orbit will, even neglecting roundoff and/or
truncation errors, be “fuzzed out” somewhat, although
the power will be sharply concentrated near well defined
maxima at discrete frequencies.

This behavior is qualitatively identical to that which is
observed for regular orbits generated in a nonintegrable
potential [14]. If, instead, one considers an orbit in a
nonintegrable potential that is chaotic, rather than regu-
lar, the computed spectrum can be significantly more
complicated. For the case of a confined stochastic orbit,
trapped temporarily near an island because of cantori,
the form of the spectrum may be nearly indistinguishable
from that observed for a regular orbit [16]. However, for
the case of an unconfined stochastic orbit, not trapped by
cantori and hence free to travel unimpeded throughout
most of the stochastic sea, the form of the spectrum is
substantially more irregular.

If, for an unconfined stochastic orbit, one focuses on
some finite time interval f;~ 100t and computes a
discrete Fourier transform, he or she will often find that
the spectrum is comprised of at least three different com-
ponents, indicating that, in a real sense, the stochastic or-
bit contains ‘“pieces” of several different types of regular
orbits. Specifically, one typically observes (1) a low level
broadband continuum, (2) peaks at a set of frequencies
appropriate for one regular orbit, e.g., a box, and (3)
peaks at another set of frequencies appropriate for at
least one other regular orbit, e.g., a loop. Indeed, the rel-
ative power in these different components provides a con-
crete diagnostic in terms of which to quantify the sense in
which some stochastic orbit is almost a box, almost a
loop, or a more significant admixture of more than one
orbit type [16]. The fact that a stochastic orbit can con-
tain within it “hints” of several different regular orbits is
readily understood in terms of the onset of chaos through
resonance overlap. This general behavior is exhibited in
Figs. 2 and 3, which, respectively, exhibit the Fourier
transformed |x (w)| and |y (w)| for two regular orbits—
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one loop and one box—and two stochastic orbits, each
computed in the potential (1) for initial conditions with
E=-023.

It is well known and easily understood that a regular
orbit in a nonintegrable time-independent potential will
manifest a strong resonant coupling to any periodic driv-
ing if the driving frequency () is approximately commen-
surate with one of the natural frequencies associated with
the unperturbed orbit. The fact that chaotic orbits can
also have spectra characterized by relatively sharp maxi-
ma would suggest by analogy that they, too, will be sus-
ceptible to resonant coupling. However, because the un-
perturbed spectra are more complex, one might antici-
pate that the nature of this coupling will be substantially
more complicated: The fact that there are more peaks
would suggest that there should be more driving frequen-
cies capable of triggering a resonance, and the broader
band character of the overall spectrum might be expected
to translate into a complicated pattern of resonances that
manifests structure even on very small scales. As will be
detailed below, this is, in fact, the case.

One obvious way in which to characterize the response
of an orbit to the periodic driving is to compute the
change in energy S8E for the orbit as a function of time ¢,
and then analyze the amplitude and overall functional
form of 8E (¢). One discovers thereby that, for both regu-
lar and chaotic orbits, in order to trigger a substantial
resonant coupling one must ensure that the driving fre-
quency ) be in a range comparable to the natural fre-
quencies w associated with the unperturbed orbit. Thus,
e.g., for bound orbits in the model potential (1), the natu-
ral frequencies typically reside in the range v ~0.05-1.0,
and to obtain a substantial resonant response one requires
a driving frequency 2 ~0.05-5.0. If Q is too high, cou-
plings to harmonics of the natural frequencies will not be
strong enough to trigger much of a response.

If a regular orbit is driven at a frequency ) that is in
near resonance with one of its natural frequencies, one

typically observes a substantial systematic response
whereby a plot of §E (t) exhibits slow, regular oscillations
with a period that can be extremely long. Thus, e.g., for
both box orbits and loop orbits in the potential (1) with
energy E ~ —0.3, one finds that the natural frequencies
exhibiting the largest power are typically of order
w~0.1-0.4 and that the driving frequencies that trigger
the largest response are of order 1~0.2-5.0, but that
the observed periodicities can be as long as 7~800 or
more. For fixed driving frequency (1, the overall size of
the response, as measured by the amplitude 8E,,, /| E,|
of the periodic oscillation, varies nearly linearly with the
amplitude «, ,, of the driving, at least for « ,, < 102 or
so, and is itself comparable in magnitude to «,,,. The
periodicity of 8E (¢) and the overall shape of the curve
are approximately independent of o, ,,. Away from reso-
nance, the amplitude of the response is smaller overall,
but still scales with @, ,, in a near-linear fashion.

Away from a resonance, the amplitude decreases
significantly, by an order of magnitude or more, even if
the driving frequency remains in the ‘“natural” range
0 ~0.05-5.0. Moreover, the simple long term periodici-
ty is lost, although it usually remains possible to identify
a more complicated multiperiodic pattern. If one esti-
mates a ‘“‘characteristic” periodicity 7 by identifying the
total number of sharply defined maxima arising within a
fixed time interval, say, t= 1000, he or she finds that there
exists a strong inverse correlation between the amplitude
of the response and the characteristic periodicity. In par-
ticular, a plot of 7 as a function of the maximum response
8E ., arising within a period = 1000 is relatively well fit
by a simple scaling 7 < 8EZ% ., with p ~ — 1.

This general behavior is illustrated in Fig. 4, which ex-
hibits the time-dependent change in energy, 8E (¢), for
several different realizations of the same initial condition,
allowing for a perturbation a,, =107 and driving fre-
quencies 0.50 < < 1.30. This particular initial condition
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corresponds to the box orbit exhibited in the first two
panels of Fig. 2.

When subjected to periodic driving, stochastic orbits
do not exhibit a comparable pattern of coherent oscilla-
tions. Moreover, the shape of the curve 8E(t) is no
longer independent of the amplitude . ,,. However, the
response is similar to that exhibited by regular orbits in
that (1) the overall amplitude still scales roughly linearly

in ., and (2) relatively small changes in Q can alter the
amplitude of the response by an order of magnitude or
more.

For a variety of different initial conditions, the largest
observed growth of |8E|/|E,| within a time = 1000 was
to value ~10-50a,,,. This robust response entailed a
roughly linear growth in |8E|, probably associated with
an evolution dominated by a single resonance. On longer
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times ¢> 1000, the growth eventually decelerates,
presumably in response to the fact that changes in the or-
bital energy have moved the orbit away from resonance.
This behavior is, however, atypical. More commonly ob-
served is a substantially weaker response, manifestly ir-
regular in form, which would suggest that the orbit is ex-
ecuting an approximate random walk in energy space.

This behavior is illustrated in Fig. 5, which exhibits the
time-dependent change in energy, 8E(¢), for several
different realizations of the same initial condition, again
allowing for a perturbation a,, =103 and driving fre-
quencies 0.50 = < 1.30. This particular initial condition
corresponds to the chaotic orbit exhibited in the first two
panels of Fig. 3. A comparison of Figs. 4 and 5 reveals
that, overall, the chaotic orbit experiences larger changes
in energy than does the regular orbit. This is a general
feature, observed for most initial conditions, the implica-
tions of which will be considered in Sec. V.

III. RESONANT DRIVING
OF INDIVIDUAL ORBITS

Unless otherwise noted, each of the series of numerical
experiments described in this section involved a computa-
tion of orbits in a perturbed version of the potential (1),
with multiple integrations being effected for a number of
different initial conditions, corresponding to both regular
and chaotic orbits. The perturbations all involved sub-
jecting m or ¢ to periodic oscillations with the same am-
plitude «a,, = 1073, since, as discussed already, the
response to the perturbation scales approximately linear-
ly in the amplitude. For each initial condition, with «,
or a,, nonzero, {) was varied between 0.00 and 5.00 in
small increments 6§ =0.025, resulting in 201 different in-
tegrations. Each integration proceeded for a total time
t=1000, with orbital data being recorded at fixed 6¢=0.5
intervals. The output from each integration was analyzed
to extract several different quantities, including the max-
imum energy excursion 8E and the mean energy ex-
cursion

max

1 2000
=— 3 |[E(t;))—E(0)], 4)
=0

SE —
Jj

mean

arising over the fixed interval, as well as several other di-
agnostics that quantify the strength of the resonant cou-
pling.

If, for a regular orbit, 8E ,, is plotted as a function of
), one observes a simple, highly regular response, with
sharply defined peak frequencies ,. Moreover, one ob-
serves that the locations of these driving frequencies
correlate directly with the values of the natural frequen-
cies associated with the unperturbed regular orbits.
Thus, in particular, the values of the peak frequencies ;
are seemingly independent of whether the core radius or
the asymmetry parameter is oscillating, although the am-
plitudes of the maxima do depend on whether it is a, or
a,, that is nonvanishing.

This behavior is illustrated in Figs. 6(a)—6(d), which
summarize data obtained for two different regular initial
conditions with E =—0.3, (a) and (c) corresponding to
the box orbit exhibited in Fig. 2 and (b) and (d) to the
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FIG. 6. (a) The rescaled maximum energy response,

10%8E ,..x, computed as a function of driving frequency , for a
box orbit with unperturbed energy £ = —0.3, subjected to a pul-
sation in ¢ of amplitude a, =1073. (b) The same quantity com-
puted for a loop orbit with unperturbed energy E = —0.3 for an
identical perturbation a,=1073. (c) The same quantity com-
puted for the box orbit of (a), now allowing for a pulsation in m
with the same amplitude a,, =1073. (d) The same quantity
computed for the loop orbit of (b), allowing for a pulsation in m
of amplitude a,, =107>.

loop of Fig. 2. Figures 6(a) and 6(b) show the maximum
energy excursion 8E ,, obtained when c oscillates, and
Figs. 6(c) and 6(d) show the corresponding data generated
by varying m. It should be obvious from this figure that,
overall, the peak frequencies are the same when ¢ and m
oscillate. However, the intensities of the peaks, both in
absolute units and in relative strengths, are different
when ¢ and m are allowed to vary, although these
differences are usually relatively small, i.e., typically less
than a factor of two. Particularly obvious is the fact that
the low level continuum arising when ¢ and m oscillate is
virtually identical.

Less obvious but also true is the fact that the patterns
of resonances in Figs. 6 are directly related to the natural
frequencies of the unperturbed orbits. Thus, e.g., for the
box orbit in Figs. 6(a) and 6(c), the natural unperturbed
frequencies for |x(w)| and |y(w)| occur at values
®,~0.0825 and w,~0.060, with the dominant peak and
successive harmonics for |y (w)| occuring at frequencies
(2n +1)o,, where o,=w;+0.50,~0.1125. However,
S8E .. exhibits successive maxima at frequencies
2nw,~0.225n. For the loop orbit of Figs. 6(b) and 6(d),
the natural unperturbed frequencies are ©,~0.060 and
®,=~0.190, but the successive maxima of 8E,, are given
as harmonics of the fundamental frequencies Q,=w,
42w, and Q,=w,. Similar patterns are observed for oth-
er regular orbits.

Figure 6 exhibit the maximum response 8E_,,. How-
ever, analogous results are also obtained if one computes
different measures of the resonant response. Thus, e.g., a
plot of 8E_.,, looks almost identical to a plot of 8E ,,
except for the fact that the amplitude is smaller by a fac-
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tor of roughly 2.

If 8E ,, is plotted instead for a chaotic orbit, one still
obtains a strongly resonant response. However, the
overall pattern is substantially more complex and, as
would be expected, cannot be explained completely in
terms of two or three fundamental frequencies. However,
despite these additional complications, the response of a
chaotic orbit resembles that of a regular orbit in that the
peak frequencies typically occur at Q~1, and that the
response is generally much weaker for 2 > 5 or so. More-
over, the peak frequencies again appear to be relatively
insensitive to how the orbit has been perturbed, in that
the responses to oscillations in ¢ and m are comparable in
magnitude.

This general behavior is exhibited in Figs. 8(a)-8(d),
which summarize data obtained for the two chaotic or-
bits with E = —0.3 exhibited in Fig. 3. As in Fig. 6, the
first two panels exhibit the maximum change in energy,
OFE . ..(Q), obtained by pulsing ¢ and the second two by
pulsing m. The overall form of the response here is clear-
ly much more complex than in Figs. 6, but the coupling is
still unambiguously resonant in the sense that a strong
response arises only for specific frequencies. The ob-
served patterns when ¢ and m are varied are again rela-
tively similar, but one observes conspicuous differences in
that frequencies ) which are especially effective when m
oscillates can be quite ineffective when it is ¢ that varies
(and visa versa). For the case of chaotic orbits, it is again
true that 8E ., and other similar quantities exhibit the
same resonant response as does OE_,,. One also observes
that, as for the case of regular orbits, the form of the con-
tinuum contribution to 8E,, is very similar for orbits in
which ¢ and m are varied, much more similar in fact than
the form of the resonant spikes.

The obvious feature arising in the resonant driving of
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FIG. 7. (a) The rescaled maximum energy response 10°8E ,,,
computed as a function of driving frequency (2, for one chaotic
orbit with unperturbed energy E = —0.3, subjected to a pulsa-
tion in ¢ of amplitude a, =107 3. (b) The same quantity comput-
ed for another with unperturbed energy E = —0.3, for an identi-
cal perturbation @, =1073. (c) and (d) The same quantities com-
puted for the orbits of (a) and (b), now pulsing m with amplitude
a,=1073.

chaotic orbits is that the response, as measured by 8E,,,
or any similar quantity, is extremely complex. This com-
plexity arises presumably as a result of the fact that there
is now a much larger number of natural frequencies to
which the driving can couple. However, this, in turn,
might suggest that a curve of 8E,,(Q) should exhibit a
good deal of structure, even on very short scales: Be-
cause the distribution of “fundamental frequencies” is
very complicated, with the peak frequencies having a rel-
atively large bandwidth, there should exist a large num-
ber of different driving frequencies ) that could resonate
with various combinations of natural frequencies.

The fact that structure exists even down to very small
scales is manifest explicitly in Fig. 8, which presents a se-
quence of plots of 8E,,(€}), generated over successively
smaller frequency intervals AQ. All the data in this
figure were generated from the initial condition exhibited
in Fig. 7(c), again oscillating m with amplitude
a,, =1073. Figure 7(c) sampled 201 points over a fre-
quency range AQ=5.0. The four panels in Fig. 7
represent 201 orbit samplings of smaller regions of, re-
spectively, total size AQ=5.0X10""!, 5.0X1072
5.0X 1073 and 5.0X 107

Figure 8 illustrates the fact that the overall response to
the driving exhibits structure even down to very small
scales, with 8E . changing by a factor of 2 or more
overall frequency intervals <(1-2)X107°. However,
there does seem to be a clear visual sense in which the
plots become more regular as AQQ is decreased. It should
also be noted that, although the response is usually a very
sensitive function of (), there are certain frequency
ranges, e.g., frequencies (=~ 1.284 in Fig. 7(c), where the
response is much smoother overall.

These latter two facts would suggest that, despite the
existence of considerable structure even on very small
scales, the dependence on  is not completely self-
similar. However, even if this dependence is not self-
similar, one might expect that, were one to consider sta-
tistical properties associated with an ensemble of initial
conditions, he or she would observe a seemingly random
behavior that is intrinsically diffusive in character.
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FIG. 8. (a)-(d) An enlargement of Fig. 6(c), focusing on fre-
quency ranges AQ=5X10"!,5X1072,5X 1073 and 5X 107%.
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IV. RESONANT DRIVING
OF ORBIT ENSEMBLES

The computations summarized in the preceding sec-
tions indicate that if an individual chaotic orbit is pulsed
with a randomly chosen frequency in the range
0.05=Q =5.0, one will typically observe a substantial,
but not huge, response, whereby 8E (¢) exhibits an ap-
parent random walk in energy space. Moreover, if the
same experiment are performed for a number of different
chaotic orbits, the responses will be similar in bulk but
different in the details. In particular, the exact short time
form of the resonant pattern is not the same for different
orbits, even if all of them are unconfined stochastic orbits
with the same unperturbed energy E.

This suggests a simple prediction as to what might be
seen if one were to select an ensemble of initial condi-
tions, evolve these initial conditions into the future, puls-
ing either ¢ or m, and then analyze the orbital data to ex-
tract such statistical properties as the distribution of en-
ergy shifts, N(8E (¢)). Suppose that each orbit in the en-
semble is, in fact, executing a random walk in energy
space. One would then expect (1) that the distribution
N(8E (t)) at any given instant should be approximately
Gaussian, (2) that the mean of the distribution should
vanish, and (3) that the dispersion of the distribution
should grow as ¢'/2. The observation from Secs. II and
IIT that, for individual orbits, the amplitude of the
response scales roughly linearly in « ,, then suggests fur-
ther that the dispersion of the distribution should vary
linearly with a ,, .

To test these predictions, a number a different experi-
ments were performed. Each involved an ensemble of
400 different initial conditions, corresponding to orbits
with a specified unperturbed energy E,. Most of the ex-
periments involved ensembles of unconfined stochastic
orbits, but others were performed for ensembles of
confined and regular orbits. Most of the ensembles were
constructed from a sampling of a small phase space re-
gion, setting x =0, uniformly sampling a small portion of
the {y,p,} plane, and then determining a positive
Px=DPx(»:p,,Eq). However, other experiments were per-
formed for initial conditions generated as a sampling of
the near-invariant measure associated with a collection of
unconfined stochastic orbits.

In each case, the initial conditions were evolved for a
time ¢t=5000, allowing for a variable ¢ or m, orbital data
being recorded at fixed time intervals. The output was
then combined to extract the distribution N(8E (¢)), as
well as the first and second moments. The amplitude of
the pulsing was varied in the range 10 °<qa_, <1077
and the driving frequency was varied in the range
0.5<0=100.0.

As for the case of individual orbits, it was found that,
overall, the largest responses arise for 1 ~ 1, independent
of orbit class, i.e., for regular and confined orbits as well
as unconfined chaotic orbits. For the case of regular and
confined chaotic orbits, the observed statistical behavior
was often quite complicated. However, for the case of
unconfined chaotic orbits with Q~1, the predicted
diffusive behavior was, in fact, usually observed, at least
for times ¢ <2000 or so.
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At very early times 8E, the root mean square (rms)
energy for ensemble, can exhibit a complicated transient
behavior but, within a time ¢ ~ 100, one sees unambigu-
ous indications of a regular ¢!/ dependence. If, for the
time interval 0 =<¢ <2000, one seeks a best fit exponent
for a relation 8E = t?, the experiments with variable ¢
yield p.=0.53+0.04, while those with variable m yield
Pm =0.57%£0.02. The best fit overall is p =0.54+0.03. If
one excludes the very early time behavior, the best fit
value of p decreases to a value even closer to 0.5.

One also observes that, independent of the amplitude
of the perturbing influence (at least for «, ,, < 1072 or so)
and of how the system is perturbed (i.e., whether it is ¢ or
m that is being varied), the distribution N(8E (z)) is ap-
proximately Gaussian in form, with a mean energy E
satisfying |E —E,| <<8E,,,. Moreover, one finds that
the amplitude of the response does indeed scale linearly
in a, ,,. Thus, in particular, if the same initial conditions
are driven in the same quantity with variable amplitude
a, or a,, and the output is fit to a linear relation
8E%,. = Azai =L one finds that the best fit values of A4
for different amplitudes typically agree to better than
5%.

Another significant point is that, in general, N(8E (¢))
and its moments appear to be independent of initial con-
ditions, provided that one considers different ensembles
of unconfined stochastic orbits with the same unper-
turbed energy. Thus, in particular, different ensembles
will, when perturbed identically, exhibit the same
8E (1) to within 2—-4 %. However, the response does
depend on whether it is ¢ or m that oscillates. Just as for
the case of individual orbits, the response of an ensemble
when varying ¢ and m can differ by close to a factor of 2.

This general behavior is illustrated in Figs. 9 and 10.
Figures 9(a) and 9(b) exhibit 8E (¢) for the same set of
initial conditions, corresponding to 400 unconfined sto-
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FIG. 9. (a) The rms change in energy 8E () for one ensem-
ble of 400 unconfined stochastic orbits with £ = —0.5, ¢ being
pulsed with frequency Q=1.0 and a.=10"*% (b) The same
quantity for the same ensemble, with m pulsed with Q=1.0 and
a,=1073. (c) The same quantity for another ensemble of
unconfined orbits with E =—0.5, again with m pulsed with
Q=10 and a,=10"* (d) The same quantity for the same en-
semble, with m pulsed with @=1.0 and a, =107°.
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FIG. 10. (a) The distribution of energy shifts, N(8E (t)), at
time t=1600, for the same data exhibited in Fig. 9(a). (b)
N(BE (1)) at time t=1600 for the data exhibited in Fig. 9(b). (¢)
N(SE (1)) at time = 1600 for the data exhibited in Fig. 9(c). (d)
N(8E (1)) at time t= 1600 for the data exhibited in Fig. 9(d).

chastic orbits of energy E,= —0.5, oscillating with fre-
quency Q2=1.0. The first panel exhibits the response to
oscillating ¢ with amplitude @, =10"* and the second to
oscillating ¢ with amplitudes a,=10">. It should be
clear that, modulo the scaling in a., the responses are
essentially identical. The smooth curve in each panel ex-
hibits the best fit to a ¢!/? relation. Figures 10(a) and
10(b) exhibit the distributions from which the 8E  , of
Figs. 9(a) and 9(b) were computed, evaluated at one
representative time, namely £=1600. In these panels, the
dashed curves represent Gaussian distributions appropri-
ate for the value of 8E ; exhibited in Figs. 9(a) and 9(b),
assuming a zero mean. The fit is again quite good.

The preceding refers to generic behavior. However, it
is also possible to find “special’’ localized ensembles, even
for the case of unconfined stochastic orbits, which are
dominated early on by a single resonance and, conse-
quently, exhibit a rather different response in which
8E ., does not exhibit a ¢!/> dependence.

Examples of this anomalous behavior are shown in
Figs. 9(c) and 9(d). These panels both exhibit 8E . (¢) for
the same ensemble of 400 initial conditions with
E,=—0.5, with ¢ oscillating with a driving frequency
Q=1.0. The first panel corresponds to an amplitude
a.=10"* and the second to a, =107>. It is evident that
the response is still proportional to «,, but that the evolu-
tion of 8E ., is no longer given by a simple ¢!/? growth
law. Rather, one observes a rapid jump in 8E , fol-
lowed by a slower subsequent evolution during which the
amplitude of 8E attains values comparable to those
arising in Figs. 9(a) and 9(b). It should also be observed
that, in this case, 6 E, (¢) shows considerably more short
scale structure, consistent with the existence of coherent,
low amplitude oscillations. It is also significant that,
despite these differences, the distributions N(8E (¢)) aris-
ing for this ensemble are still reasonably well fit by a
Gaussian, albeit with a nonzero mean. This is illustrated
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FIG. 11. (a) The rms change in energy 8E . (¢) for the en-
semble of 400 unconfined stochastic orbits with £ =—0.5 ex-
hibited in Figs. 9(c) and 9(d), with ¢ being pulsed at amplitude
a,=1073 with frequency 2=10.0. (b) The same as Fig. 11(a),
except with Q=100.0.

in Figs. 10(c) and 10(d), which again exhibit these distri-
butions at time = 1600.

Even for those “normal” ensembles exhibiting short
time diffusive behavior, deviations can be observed at
later times ¢ > 3000-4000, reflecting two different effects:
(1) When analyzing the statistics of a 400 orbit ensemble,
one finds that contributions from a relatively small num-
ber of orbits exhibiting a systematic linear growth in
S8E . can eventually outweigh contributions arising from
the slower t!/2 growth exhibited by a large majority of
the orbits; (2) it is also possible that, as time evolves,
different stochastic orbits originally exhibiting a random
walk can become trapped in a resonance and begin to ex-
hibit a more rapid, linear evolution.

The systematic growth of 8E manifest in Fig. 9 only
results because of resonant couplings that are operative at
frequencies 0 ~ 1 and, consequently, disappears for much
higher or lower frequencies. This is, e.g., illustrated in
Figs. 11(a) and 11(b), which, respectively, exhibit 8E
for the same initial conditions as Figs. 9(c) and 9(d), now
pulsed in ¢ at frequencies Q=10 and 100. In these
figures, the dotted curves represent the actual data, out-
put at intervals 6¢=5.0., The solid curves, derived by
boxcar averaging over, respectively, 10 and 20 time steps,
exhibit the average value of 8E ;, which, after the initial
transient, is approximately constant. It is clear that, after
the initial transient, the changes in energy, 8E  , com-
puted for Q=10 and 100, do not exhibit the systematic
diffusive behavior observed for Q=1.0. Rather, the value
of 8E . is approximately constant.

V. DISCUSSION AND IMPLICATIONS
FOR GALACTIC DYNAMICS

Perhaps counter to naive expectations, chaotic orbits
appear more susceptible overall to resonant driving than
are regular orbits: Because regular orbits only have
power at or near a few discrete frequencies ;, they must
be driven with carefully chosen frequencies  to elicit a
significant response. By contrast, because chaotic orbits
have substantial power for a broader range of frequen-
cies, it is much more likely that a randomly chosen ) will
be able to trigger a significant resonant coupling.

For a single chaotic orbit, the amplitude of the
response to external driving is a very sensitive function of
initial conditions, with a typical orbit executing an ap-
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parent random walk in energy space. This explains the
fact that, generically, the behavior exhibited by an ensem-
ble of orbits will be intrinsically diffusive, with a Gauss-
ian distribution of energy shifts, N(8E(¢)), and an rms
shift 8E ocozc,mtl/ 2, where a.,, denotes the amplitude
of the periodic driving.

Several specific features of this phenomenon suggest
that resonant driving of stochastic orbits could prove im-
portant for galactic potentials admitting global stochasti-
city. The most obvious fact is that the characteristic fre-
quencies eliciting a significant response, namely, { be-
tween 0.05 and 5.0 or so, correspond to a characteristic
time scale Q! comparable to a dynamical, or crossing,
time ¢... However, it is evident that time-dependent
effects with such characteristic frequencies could arise
naturally in response to either internal oscillations about
some average, time-independent potential, or to the per-
turbing influences of some nearby galaxy.

Also significant is the fact that, for frequencies in this
optimal range, even a relatively small amplitude driving
can trigger a significant response within a time ¢ ~2000,
this corresponding to a Hubble time ?5. Consider, e.g.,
the case of stochastic orbit ensembles with initial energy
E = —0.5, subjected to oscillations in c. Here, even a rel-
atively tiny perturbation of fractional amplitude
a,.=1073 suffices to induce an rms change in energy of
approximately 6% within a time ¢=2000; and, since the
amplitude of the response scales linearly in a,, increasing
a, to even slightly larger values implies significant frac-
tional changes in a typical particle energy. However,
such a characteristic amplitude is easily attributable to a
relatively large nearby satellite, or companion, galaxy.

The response of an ensemble of stochastic orbits does
manifest a relatively sensitive dependence on the specific
value of the driving frequency. However, this depen-
dence on (2 is much smoother than that exhibited by indi-
vidual stochastic orbits. This is, e.g., illustrated in Fig.
12(a), which exhibits the value of §E ., at r=1000, gen-
erated for ensembles of stochastic orbits with E = —0.5,
pulsed in ¢ with fixed amplitude a,=10"* but variable
frequency (. Each frequency was sampled by at least
one ensemble of 160 orbits and, in most cases, three en-
sembles were selected. The error bars reflect the disper-
sion for the computed values of 8E . Figure 12(b) ex-
hibits identical data for ensembles with E =—0.3.
Overall, approximately 90% of the ensembles used to
generate these figures exhibited a diffusive behavior with
8E ., growing as t'/2, whereas the remaining 10% ad-
mitted various forms of “anomalous” behavior. The in-
cidence of anomalous behavior was not significantly
higher for frequencies where the response was particular-
ly large (or small).

It is clear from Fig. 12 that, even in the natural fre-
quency range, the amplitude of the response exhibits con-
siderable variability but, for most values of the frequency,
the response is, in fact, significant. This indicates again
that a finely tuned frequency is not required to trigger a
substantial response. In this regard, it should perhaps be
observed that for E =—0.5, the frequency Q=1.0, dis-
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FIG. 12. (a) The rms change in energy 8E, at t= 1000 com-
puted for one or more ensembles of 160 unconfined stochastic
orbits with E =—0.5, pulsed in ¢ at amplitude a, =10"* with
variable frequency . (b) The same for ensembles with

=-—0.3.

cussed in Sec. IV and used above to estimate the overall
effects of periodic driving, actually corresponds to a rela-
tively ‘“bad” frequency, corresponding to a local
minimum in 8E__(Q).

Resonant driving could be important astronomically
for a self-consistent near equilibrium because changes in
the distribution of energies can induce changes in the
bulk potential and, hence, alterations in the bulk distribu-
tion of matter, including the ejection of matter with posi-
tive energy. If the potential admits only regular orbits,
resonant driving may be relatively unimportant, except at
a few special frequencies, so that the system could
perhaps readjust itself to minimize the effects of internal
oscillations and/or an external environment. If, however,
the self-consistent potential continues to evolve in such a
fashion as to admit substantial global stochasticity, one
might anticipate that resonant driving would persist as a
nontrivial influence, triggering a continuing evolution.
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